Divergent warning patterns contribute to assortative mating between incipient Heliconius species
نویسندگان
چکیده
Theoretical models suggest that traits under divergent ecological selection, which also contribute to assortative mating, will facilitate speciation with gene flow. Evidence for these so-called "magic traits" now exists across a range of taxa. However, their importance during speciation will depend on the extent to which they contribute to reproductive isolation. Addressing this requires experiments to determine the exact cues involved as well as estimates of assortative mating in the wild. Heliconius butterflies are well known for their diversity of bright warning color patterns, and their amenability to experimental manipulation has provided an excellent opportunity to test their role in reproductive isolation. Here, we reveal that divergent color patterns contribute to mate recognition between the incipient species Heliconius himera and H. erato, a taxon pair for which assortative mating by color pattern has been demonstrated among wild individuals: First, we demonstrate that males are more likely to attempt to mate conspecific females; second, we show that males are more likely to approach pinned females that share their own warning pattern. These data are valuable as these taxa likely represent the early stages of speciation, but unusually also allow comparisons with rates of interbreeding between divergent ecologically relevant phenotypes measured in the wild.
منابع مشابه
Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies
Ecological speciation proceeds through the accumulation of divergent traits that contribute to reproductive isolation, but in the face of gene flow traits that characterize incipient species may become disassociated through recombination. Heliconius butterflies are well known for bright mimetic warning patterns that are also used in mate recognition and cause both pre- and post-mating isolation...
متن کاملDisruptive ecological selection on a mating cue.
Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such 'magic' or 'multiple-effect' traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological tra...
متن کاملAssortative mating preferences among hybrids offers a route to hybrid speciation.
Homoploid speciation generates species without a change in chromosome number via introgressive hybridization and has been considered rare in animals. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has a color pattern that can be recreated by introgression of the H. melpomene red band into an H. cydno genetic backg...
متن کاملHybrid zones and the speciation continuum in Heliconius butterflies.
Tropical butterflies in the genus Heliconius have long been models in the study of the stages of speciation. Heliconius are unpalatable to predators, and many species are notable for multiple geographic populations with striking warning colour pattern differences associated with Müllerian mimicry. A speciation continuum is evident in Heliconius hybrid zones. Examples range from hybrid zones acr...
متن کاملMorphological Differentiation May Mediate Mate-Choice between Incipient Species of Anopheles gambiae s.s.
The M and S molecular forms of Anopheles gambiae s.s. have been considered incipient species for more than ten years, yet the mechanism underlying assortative mating of these incipient species has remained elusive. The discovery of the importance of harmonic convergence of wing beat frequency in mosquito mating and its relation to wing size have laid the foundation for exploring phenotypic dive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014